
Event Driven Architecture
Introduction

Industry

Website

Author

The world is changing. Companies now run global
businesses that span the globe and hop between
clouds, breaking down silos to create seamless
applications that work together for the good of the
organization. This continuous state of change means
that legacy architectures are insufficient or unsuitable
to meet the needs of the modern organization.
Applications must be able to run 24×7 with 5-9s
(uptime of 99.999%), as well as be superelastic, global
and cloud native.

Applicable to all traditional
architectures such as
"request/response" pattern
simply cannot meet the
challenges of real time and
extreme scale.

Fastcube.fr

Michel Thai, 
Data Architect Lead

INTRODUCTION

Traditional architectures such as "request/response"
pattern simply cannot meet the challenges of real time
and extreme scale. Event-driven architecture breaks
everything down into separate microservices that
create constant streams of data events that can be
received and processed much faster. Event driven
architecture isn’t just for streaming data. It brings
added efficiency, flexibility, and security to your
systems, making them more maintainable, scalable,
and robust.

EVENT SOURCE

BILLING
SERVICE

WAREHOUSE
SERVICE

PAYMENTS
SERVICE

DELIVERY
SERVICEWEB APP

ORDERED

+
ITEMSS

AVAILABLE

2 3 32

4

4

5

5

1

PAYMENTS
COMPLETED

ORDERED
SHIPPED

PAYMENTS
COMPLETED

ITEMSS
AVAILABLE

INVOICES
SENT

ORDERED ORDEREDPAYMENTS
COMPLETED



Found in everyday life:
There are events even with coffee machine: From state OFF to READY => event «
initialization completed» from state READY to BREWING => event «brew
button/command triggered ».
From state BREWING to READY => event « brewing process finished » (!!! Finished
does not mean everything went ok you have to check its results to know that).
Workflow is commonly used in Business to describe an choreographed and
repeatable pattern of activity in an Organization inside which event can be found.

Experience are built from past events:
Event are fact what’s already happened; it is immutable thus can be used as log for
monitoring historical data can be used to identify weakness in system and provide
opportunity to enforce resiliency also known as continual improvement process
process efficiency can be improved with design review etc.…

WHAT CAN BE ACHIEVE WITH?

Shared knowledge:

Build Resilient System:

Implementation and reuse of existing code :

Event could be used to ease the understanding between IT and Business.

Monitoring of Events can be used to provide self-healing features

- Many actors can consume the same events.
- Update of component can be done with minimal interruption of services.
- Events allow design of independent modules which in turn speed up productivity.

It is Simple:
Event is not a new concept and it happened all the time and is still happening, they
are everywhere.
But only what’s being observed are modelized and we are observing the change of
states.
Event model are abstract and is up to the observer to defined what detail are
needed/useful.

WHY EVENT ?



Command

ACTOR

Event

Command
- turn on

Light Bulb

ACTOR

Event
- switched on

Command
- turn on

Light Bulb

HOW TO BUILD SUCH SYSTEM?

The ACTOR MODEL in computer science is a conceptual model use to deal with concurrent
computation.
ACTOR is an abstraction that represent a unit of calculation and consume messages
ACTOR can produce Message to others actors.
ACTORS never have direct interaction between them but indirectly through message posted in
a MailBox represented by their address.
Actor consume 1 Command at a time.
The process of a Command can generate an Event every time the observation of a state has a
change.
One Command can produce multiple Events.

ACTOR

Mailbox

ACTOR

ACTOR

ACTOR

Mailbox

Mailbox

Message

Actor model as foundation



SFTP
Connector

Command
- Deliver

Event 
- Delivered

Event 
- Retrieved

Event
- Delivered

Event 
- FileFound

Command
- Deliver

Event
- Retrieved

Event
- FileFound

Command
- Retrieve

Command
- Search

Scheduler

Event 
- NoFileFound

Crontab SFTP Connector (A) SFTP Connector (B)

SFTP
Connector

Command
- Retrieve

Crontab

Co
m

m
an

d
- S

ea
rc

h

Store

Event 
- Retrieved
- FileFound
- NoFileFound

Reactive programming is the general paradigm behind easily propagating changes in a data
stream through the execution of a program.
When x changes or updates in one location, the things that depend on the value of x are
recalculated and updated in various other locations in a non-blocking fashion, without having to
tie up threads sitting around just waiting for events to happen.

Reactive programming

Chained reaction in distributed system
Using Event as a medium of communication betweens Actors a chained reaction can be define.
This chain can be the representation of the processing of a « business flow ».

In this article, we have seen a short introduction about Event-Driven Architecture, this architecture
is an important paradigm shift in a system, it can be designed in multiple approach with
combining multiple patterns based on event.

What's next ? 


